
CENG 466

Artificial Intelligence

Lecture 4

Solving Problems by Searching (II)

1

Topics

 Search Categories

 Uninformed Search Algorithms

 Informed Search Algorithms

 Best First Search

 Greedy Search

 A* Search

 Iterative Deepening A* Search

 Hill Climbing Search

 Simulated Annealing Search

2

Intelligent Agents

 An agent is something that perceives and acts in an

environment

 An ideal agent always takes actions that maximizes its

performance

 An agent adopts a goal and searches the best path to

reach that goal

3

States and State-Spaces

 State: The set of all information items that

describe a system at a given time.

 State space is the set of states that an

intelligent agent can be in.

 An action takes the agent from one state to

another one.

 State space search is finding a sequence of

states starting from the initial state to the goal

4

Searching

 Assuming that the agent knows:

 how to define a problem,

 how to recognize a solution (goal),

 finding a solution is done by a search

through the state space.

5

Search Categories

 Un-informed Searches: If we have no

extra information about the problem

 Informed Searches: If we have extra

information about the problem.

6

Un-informed Searches

 In un-informed searches, the agent

knows:

 The initial state

 The goal state

 But it does not know if a state is close to

the goal or not

 Therefore, these searches are blind

searches
7

Depth Limited Search

 Depth-limited search avoids the problems of

depth-first search by imposing a cutoff on the

maximum depth of a path.

 This cutoff can be implemented with a special

depth-limited search algorithm.

 For example, when finding a path from a city to

another city, if we know that there are 20 cities,

so we know that the solution must be of length 19

at most.

8

Depth Limited Search Example

9

Depth Limited Search Example

 If the search algorithm can remember which

states have been visited before, then starting

from A we have

 A, B, D, F, E, C, G

 Otherwise the search algorithm will be in an

infinite loop:

 A, B, D, F, E, A, B, D, F, E, etc.

 Depth limited search can solve the problem.

 Max depth = 2  A, B, D, F, C, G, E, F

10

Iterative Deepening Search

 The hard part about depth-limited search is

picking a good limit.

 However, for most problems, we will not know a

good depth limit until we have solved the

problem.

 Iterative deepening search starts with depth n,

then depth n+k, then depth n+2k, and so on.

 In effect, iterative deepening combines the

benefits of depth-first and breadth-first search.

11

Iterative Deepening Search

Example

 Assume we are looking for a goal state in

chess game.

 The state-space is very large

 The search for a goal cannot be done by

a depth search algorithm because the

whole graph cannot be expanded

12

Example: Depth = 0

13

Example: Depth =1

Visits: A, B, C

14

Example: Depth = 2

Visits: A, B, D, E, C, F, G, H

15

Example: Depth = 3

Visits: A, B, D, I, J, E, K, L, M C, F, N

16

Bidirectional Search

 The idea in bidirectional search is to search

both forward from the initial state, and

backward from the goal at the same time.

 The algorithm stops when the two searches

meet in the middle

17

Avoiding Repeating States

 There are three ways to avoid repeated states:

1. Do not return to the state that we just came from.

2. Do not create paths with cycles in them.

3. Do not generate any state that was ever generated

before. This requires every state that is generated to

be kept in memory.

18

Informed Searches

 Informed searches have some extra

information about the problem

 At each state, we can estimate how far

we are from the goal

 Using this information, we can have

better search algorithms

19

How to Use the Information in

Searches

 If the state space of a problem is large, we
expand only some of the nodes.

 Choosing the next node to expand is the main
difference between the search algorithms.

 An informed search algorithm uses its extra
information when it decides which node should
be expanded

20

Informed Search Algorithms

 Best First Search

 Greedy Search

 A* Search

 Hill Climbing Search

 Simulated Annealing Search

21

Best First Search

 Best First Search puts the nodes in order so

that, the node with the best value is expanded

first.

 The best node is the node, that appears to be

best according to the evaluation function.

 In most cases, evaluation function only

estimates the value of the nodes.

22

Evaluation of States

 The aim of searching in state space graph is

finding the best path to a goal.

 To find the best path we should define a value

for each state.

 This value shows how far we are from the goal

 Evaluation function calculates the distance to

goal.

 If exact calculation of the distance to goal is not

possible, we use estimates, this is called

heuristic function.

23

Evaluation in Best-First Search

 Best first search algorithms use some
estimated measure of the cost, and try to
minimize it.

 Two basic approaches for estimating cost
are:

 The greedy search which tries to expand the
node closest to the goal.

 The A* search which tries to expand the node on
the least-cost solution path.

24

Greedy Search

 Greedy search is one of the simplest best-first

search strategies

 Greedy search minimizes the estimated cost to

reach the goal.

 The cost of reaching the goal from a state can

be estimated but cannot be determined

exactly.

 A function that calculates such costs is called a

heuristic cost function

25

Best First Search Example

 Assume a graph of cities and the roads
connecting them is given.

 The initial city and the goal city are
defined.

 The evaluation function is based on the
geographical coordinates of the cities.

26

Greedy Search Solution (I)

 Initial city is A. Goal is F. The evaluation

function expands C because its location is

closer to the location of the Goal

27

Greedy Search Solution (II)

 Not in all cases the evaluation function gives a

good estimation.

28

A* Search

 Greedy search minimizes the estimated cost to

the goal, h(n).

 Uniform-cost search minimizes the cost of the

path so far, g(n).

 A* combines these two strategies to get the

advantages of both.

f(n) = g(n) + h(n)

29

Example: A* Search

 Assume the estimation to goal [h(.)] and

the distance between cities are as shown

in the figure.

 Initial city is A

 Goal is H

30

B

A

D

C

F

G

E

H

8

7

9
6

5

12

3

6

4

H=10

H=11
H=7

H=6

H=17

H=12

4

4

31

Hill-Climbing Search

 The hill-climbing search algorithm moves

in the direction of increasing values.

 The algorithm only follows the neighbors

having larger values.

 The algorithm may stop at local

maximum nodes.

32

Hill-Climbing Search

33

Example: Hill-Climbing Search

 Assume a graph of nodes with different values

is given.

 Starting from an initial node, find the node

with the maximum value.

34

5

7 6

10

15

11

4

18

35

36

Problem with Hill-Climbing

Search

 Hill-Climbing stops at local maximums.

 In the previous example, starting from 5, Hill-

Climbing finds 15 as the maximum value. But

the node with 18 has the maximum value.

 As a solution when the hill-climbing stops at a

maximum point we re-start it from a random

point.

 If the algorithm goes to the same point, that

point is probably a global maximum.

37

Simulated Annealing

 Simulated Annealing solves the local

maximum problem in hill-climbing

algorithm by allowing it to follow down-

hill paths in a limited range.

38

Example: Simulated Annealing

39

Example: Simulated Annealing

40

Example

 Assume four boxes are stacked on each

other as shown in the following figure

(left). The goal it putting them in right

order as shown below (right)

41

Example

 Each order of the blocks is a state. Some

examples are shown below:

42

Example

 Assigning a score to each state:

 If a block is on top of right block give it a

score of +1

 If a block is on top of wrong block give it a

score of -1

 Add up the scores to get the score of the

state

43

Example

 Example scores of states:

44

Example

 Starting from the first state, move to next

state:

45

Example

46

Questions?

47

Future Intelligent Agents !!!

48

