
CENG 466

Artificial Intelligence

Lecture 5

Solving Problems by Searching (III)



Topics

 Search Categories

 Informed Search Algorithms

 Best First Search

 Greedy Search

 A* Search

 Iterative Deepening A* Search

 Hill Climbing Search

 Simulated Annealing Search

 Game Playing and Min-Max Search



Intelligent Agents

 An agent is something that perceives and acts in an 

environment

 An ideal agent always takes actions that maximizes its 

performance

 An agent adopts a goal and searches the best path to 

reach that goal



Future Intelligent Agents !!!



States and State-Spaces

 State: The set of all information items that 

describe a system at a given time.

 State space is the set of states that an 

intelligent agent can be in.

 An action takes the agent from one state to 

another one. 

 State space search is finding a sequence of 

states starting from the initial state to the goal 



Searching

 Assuming that the agent knows: 

 how to define a problem, 

 how to recognize a solution (goal), 

 finding a solution is done by a search 

through the state space. 



Search Categories

 Un-informed Searches: If we have no 

extra information about the problem

 Informed Searches: If we have extra 

information about the problem. 



Un-informed Searches

 In un-informed searches, the agent 

knows:

 The initial state

 The goal state

 But it does not know if a state is close to 

the goal or not

 Therefore, these searches are blind 

searches



Informed Searches

 Informed searches have some extra 

information about the problem

 At each state, we can estimate how far 

we are from the goal

 Using this information, we can have 

better search algorithms



How to Use the Information in 

Searches

 If the state space of a problem is large, we 
expand only some of the nodes.

 Choosing the next node to expand is the main 
difference between the search algorithms.

 An informed search algorithm uses its extra 
information when it decides which node should 
be expanded 



Informed Search Algorithms

 Best First Search

 Greedy Search

 A* Search

 Hill Climbing Search

 Simulated Annealing Search



Best First Search

 Best First Search puts the nodes in order so that 

the node with the best value is expanded first.

 The best node is the node, that appears to be 

best according to the evaluation function.

 In most cases evaluation function only 

estimates the value of the nodes.



Evaluation in Best-First Search

 Best first search algorithms use some 
estimated measure of the cost of the 
solution and try to minimize it. 

 Two basic approaches for estimating cost 
are:

 The greedy search which tries to expand the 
node closest to the goal. 

 The A* search which tries to expand the node on 
the least-cost solution path.



Greedy Search

 Greedy search is one of the simplest best-first 

search strategies 

 Greedy search minimizes the estimated cost to 

reach the goal.

 The cost of reaching the goal from a state can 

be estimated but cannot be determined 

exactly. 

 A function that calculates such costs is called a 

heuristic function



Best First Search Example

 Assume a graph of cities and the roads 
connecting them is given.

 The initial city and the goal city are 
defined.

 The evaluation function is based on the 
geographical coordinates of the cities.



Greedy Search Solution (I)

 Initial city is A. Goal is F. The evaluation 

function expands C because its location is 

closer to the location of the Goal



Greedy Search Solution (II)

 Not in all cases the evaluation function gives a 

good estimation.



A* Search

 Greedy search minimizes the estimated cost to 

the goal, h(n). 

 Uniform-cost search minimizes the cost of the 

path so far, g(n).

 A* combines these two strategies to get the 

advantages of both. 

f(n) = g(n) + h(n)



Example: A* Search

 Assume the estimation to goal [h(.)] and 

the distance between cities are as shown 

in the figure.

 Initial city is A

 Goal is H



B

A

D

C

F

G

E

H

8

7

9
6

5

12

3

6

4

H=10

H=11
H=7

H=6

H=17

H=12

4

4



Iterative Deepening A* Search

 In un-informed searches iterative 

deepening is used as a useful technique 

for reducing memory requirements. 

 We can use the same method with A* 

search 

 Iterative A* search works like depth-first 

search, however, the maximum depth is 

increased at each step (iteration).



A* Example: Chess Game



Case 1:

g() = 1 (1 move)

h() = getting a pawn and

threatening Queen 



Case 2:

g() = 1 (1 move)

h() = threatening castle 

and king in the next move



Hill-Climbing Search

 The hill-climbing search algorithm moves 

in the direction of increasing values. 

 The algorithm only follows the neighbors 

having larger values.

 The algorithm may stop at local 

maximum nodes.



Hill-Climbing Search



Example: Hill-Climbing Search

 Assume a graph of nodes with different values 

is given. 

 Starting from an initial node, find the node 

with the maximum value.



5

7 6

10

15

11

4

18





Problem with Hill-Climbing 

Search

 Hill-Climbing stops at local maximums.

 In the previous example, starting from 5, Hill-

Climbing finds 15 as the maximum value. But 

the node with 18 has the maximum value.

 As a solution when the hill-climbing stops at a 

maximum point we re-start it from a random 

point.

 If the algorithm goes to the same point, that 

point is probably a global maximum.



Simulated Annealing

 Simulated Annealing solves the local 

maximum problem in hill-climbing 

algorithm by allowing it to follow down-

hill paths in a limited range.



Example: Simulated Annealing



Example: Simulated Annealing



Game Playing 

 Game playing can be considered as a graph 

search problem.

 Each node of the graph is a state in the game.

 The goal nodes are the states when we win the 

game.



The Difference between Games 

and Search Problems

 In the normal search problems, the search 

algorithm tries to find the best path to the goal 

state.

 In a game, the opponents make moves in turns

 Therefore, in one step we want to maximize a 

value, while in the next step we want to 

minimize it.

 An algorithm named min-max algorithm is used 

for game playing.



Questions?


