
CENG 466

Artificial Intelligence

Lecture 5

Solving Problems by Searching (III)



Topics

 Search Categories

 Informed Search Algorithms

 Best First Search

 Greedy Search

 A* Search

 Iterative Deepening A* Search

 Hill Climbing Search

 Simulated Annealing Search

 Game Playing and Min-Max Search



Intelligent Agents

 An agent is something that perceives and acts in an 

environment

 An ideal agent always takes actions that maximizes its 

performance

 An agent adopts a goal and searches the best path to 

reach that goal



Future Intelligent Agents !!!



States and State-Spaces

 State: The set of all information items that 

describe a system at a given time.

 State space is the set of states that an 

intelligent agent can be in.

 An action takes the agent from one state to 

another one. 

 State space search is finding a sequence of 

states starting from the initial state to the goal 



Searching

 Assuming that the agent knows: 

 how to define a problem, 

 how to recognize a solution (goal), 

 finding a solution is done by a search 

through the state space. 



Search Categories

 Un-informed Searches: If we have no 

extra information about the problem

 Informed Searches: If we have extra 

information about the problem. 



Un-informed Searches

 In un-informed searches, the agent 

knows:

 The initial state

 The goal state

 But it does not know if a state is close to 

the goal or not

 Therefore, these searches are blind 

searches



Informed Searches

 Informed searches have some extra 

information about the problem

 At each state, we can estimate how far 

we are from the goal

 Using this information, we can have 

better search algorithms



How to Use the Information in 

Searches

 If the state space of a problem is large, we 
expand only some of the nodes.

 Choosing the next node to expand is the main 
difference between the search algorithms.

 An informed search algorithm uses its extra 
information when it decides which node should 
be expanded 



Informed Search Algorithms

 Best First Search

 Greedy Search

 A* Search

 Hill Climbing Search

 Simulated Annealing Search



Best First Search

 Best First Search puts the nodes in order so that 

the node with the best value is expanded first.

 The best node is the node, that appears to be 

best according to the evaluation function.

 In most cases evaluation function only 

estimates the value of the nodes.



Evaluation in Best-First Search

 Best first search algorithms use some 
estimated measure of the cost of the 
solution and try to minimize it. 

 Two basic approaches for estimating cost 
are:

 The greedy search which tries to expand the 
node closest to the goal. 

 The A* search which tries to expand the node on 
the least-cost solution path.



Greedy Search

 Greedy search is one of the simplest best-first 

search strategies 

 Greedy search minimizes the estimated cost to 

reach the goal.

 The cost of reaching the goal from a state can 

be estimated but cannot be determined 

exactly. 

 A function that calculates such costs is called a 

heuristic function



Best First Search Example

 Assume a graph of cities and the roads 
connecting them is given.

 The initial city and the goal city are 
defined.

 The evaluation function is based on the 
geographical coordinates of the cities.



Greedy Search Solution (I)

 Initial city is A. Goal is F. The evaluation 

function expands C because its location is 

closer to the location of the Goal



Greedy Search Solution (II)

 Not in all cases the evaluation function gives a 

good estimation.



A* Search

 Greedy search minimizes the estimated cost to 

the goal, h(n). 

 Uniform-cost search minimizes the cost of the 

path so far, g(n).

 A* combines these two strategies to get the 

advantages of both. 

f(n) = g(n) + h(n)



Example: A* Search

 Assume the estimation to goal [h(.)] and 

the distance between cities are as shown 

in the figure.

 Initial city is A

 Goal is H



B

A

D

C

F

G

E

H

8

7

9
6

5

12

3

6

4

H=10

H=11
H=7

H=6

H=17

H=12

4

4



Iterative Deepening A* Search

 In un-informed searches iterative 

deepening is used as a useful technique 

for reducing memory requirements. 

 We can use the same method with A* 

search 

 Iterative A* search works like depth-first 

search, however, the maximum depth is 

increased at each step (iteration).



A* Example: Chess Game



Case 1:

g() = 1 (1 move)

h() = getting a pawn and

threatening Queen 



Case 2:

g() = 1 (1 move)

h() = threatening castle 

and king in the next move



Hill-Climbing Search

 The hill-climbing search algorithm moves 

in the direction of increasing values. 

 The algorithm only follows the neighbors 

having larger values.

 The algorithm may stop at local 

maximum nodes.



Hill-Climbing Search



Example: Hill-Climbing Search

 Assume a graph of nodes with different values 

is given. 

 Starting from an initial node, find the node 

with the maximum value.



5

7 6

10

15

11

4

18





Problem with Hill-Climbing 

Search

 Hill-Climbing stops at local maximums.

 In the previous example, starting from 5, Hill-

Climbing finds 15 as the maximum value. But 

the node with 18 has the maximum value.

 As a solution when the hill-climbing stops at a 

maximum point we re-start it from a random 

point.

 If the algorithm goes to the same point, that 

point is probably a global maximum.



Simulated Annealing

 Simulated Annealing solves the local 

maximum problem in hill-climbing 

algorithm by allowing it to follow down-

hill paths in a limited range.



Example: Simulated Annealing



Example: Simulated Annealing



Game Playing 

 Game playing can be considered as a graph 

search problem.

 Each node of the graph is a state in the game.

 The goal nodes are the states when we win the 

game.



The Difference between Games 

and Search Problems

 In the normal search problems, the search 

algorithm tries to find the best path to the goal 

state.

 In a game, the opponents make moves in turns

 Therefore, in one step we want to maximize a 

value, while in the next step we want to 

minimize it.

 An algorithm named min-max algorithm is used 

for game playing.



Questions?


